
HARDWARE ACCELERATION OF

MULTI-DEME GENETIC ALGORITHM

FOR DNA CODEWORD SEARCHING

Qinru Qiu1, Daniel Burns2, Prakash Mukre1, Qing Wu1

1Department of Electrical and Computer Engineering,

Binghamton University, Binghamton, NY, USA

Email: {qqiu, pmukre, qwu}@binghamton.edu,

2Air Force Research Laboratory, Rome Site,

26 Electronic Parkway, Rome, NY, USA

Email: Daniel.Burns@rl.af.mil

Abstract

A large and reliable DNA codeword library is key to the success of DNA based

computing. Searching for sets of reliable DNA codewords is an NP-hard problem,

which can take days on state-of-art high performance cluster computers. This work

presents a hybrid architecture that consists of a general purpose microprocessor and

a hardware accelerator for accelerating the multi-deme genetic algorithm (GA) for

the application of DNA codeword searching. The presented architecture provides

more than 1000X speed-up compared to a software only implementation. A code

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
Hardware Aceleration Of Multi-Deme Genetic Algorithm For DNA
Codeword Searching

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory, Rome Site,26 Electronic
Parkway,Rome,NY,13440

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
 International Journal of Information Technology and Intelligent Computing, 2008.

14. ABSTRACT
A large and reliable DNA codeword library is key to the success of DNA based computing. Searching for
sets of reliable DNA codewords is an NP-hard problem which can take days on state-of-art high
performance cluster computers. This work presents a hybrid architecture that consists of a general
purpose microprocessor and a hardware accelerator for accelerating the multi-deme genetic algorithm
(GA) for the application of DNA codeword searching. The presented architecture provides more than
1000X speed-up compared to a software only implementation. A code extender that uses exhaustive search
to produce locally optimum codes in about 1.5 hours for the case of length 16 codes is also described. The
experimental results demonstrate that the GA can find ~99% of the words in locally optimum libraries.
Finally, we investigate the performance impact of migration, mating and mutation functions in the
hardware accelerator. The analysis shows that a modified GA without mating is the most effective for DNA
codeword searching.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

26

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

extender that uses exhaustive search to produce locally optimum codes in about 1.5

hours for the case of length 16 codes is also described. The experimental results

demonstrate that the GA can find ~99% of the words in locally optimum libraries.

Finally, we investigate the performance impact of migration, mating and mutation

functions in the hardware accelerator. The analysis shows that a modified GA

without mating is the most effective for DNA codeword searching.

Keywords

DNA, Genetic Algorithm, Hardware Acceleration

1. Introduction

The DNA molecule is now used in many areas far beyond its traditional function.

The first DNA-based computation was proposed and implemented by Adleman [1].

It demonstrates the effectiveness of using DNA to solve hard combinatorial

problems. DNA molecules have also been used as information storage media and

three dimensional structural materials for nanotechnology.

One of the major concerns of DNA computing is reliability. In DNA computing,

the information is encoded as DNA strands. Each DNA strand is composed of short

codewords. DNA computing is based on the hybridization process, which allows

short single-stranded DNA sequences (i.e. oligonucleotides) to self-assemble to

form stable double-stranded duplexes. The reliability of the computing is

determined by whether the oligonuleotides can hybridize in a predetermined way.

The key to success in DNA computing is the availability of a large collection of

DNA codeword pairs that do not crosshybridize.

Various quality metrics have been proposed to guide the construction process [1]-

[5]. The computation of these metrics dominates the run time of the code building

process. While metrics based on the Gibbs energy and nearest neighbor

thermodynamics and consideration of secondary structure formation give accurate

measurement of hybridization, they are computationally costly, as a first step in this

work we chose a simpler metric, the Levenshtein distance, or the so-called deletion-

correcting or edit distance, which has also been used to construct DNA codes [6].

Regardless of the quality metric used, composing DNA codes is NP-hard because

the number of potential codewords that must be searched increases exponentially

with the length of the DNA codewords. Exhaustive checking is generally

impractical for words of length greater than about 12 base pairs. Various

algorithms have been proposed for building DNA codes, including the GA [7],

Markov processes [8], and Stochastic methods [9]. Recent work [10] has shown

that a hybrid GA blended with Conway’s lexicode algorithm [11][12] achieves

better performance than either alone in terms of generating useful codes quickly.

Search methods for DNA codes are extremely time-consuming, and this has limited

research on DNA codeword design, especially for codes of length greater than

about 12-14 bases. Theory is lacking to provide tight upper bounds on the size of

codeword sets, and the best known bounds are base on experiments. For example,

the largest known reverse complement edit distance DNA codeword library (length

16, edit distance 10) consist of 132 pairs, composing such codes can take several

days on a cluster of 10 G5 processors.

This paper focuses generally on speed-up techniques for the composition of reverse

complement, edit distance, DNA codes of length 16, using a multi-deme genetic

algorithm. We propose a FPGA (Field Programmable Gate Array) based hardware

accelerator design which performs multi-deme parallel GA on a single chip. The

hardware accelerator and the host PC communicate via the system bus, and an

appropriate software interface controls communication between them. The

proposed architecture provides more than 1000X speed-up compared to a software

only implementation. A hardware based code extender that uses exhaustive search

to produce locally optimum codes is also described. The code extender does a final

scan across the entire universe of possible codewords and completes the codeword

library generated from GA by adding any additional words that satisfy the specified

constraints.

The remainder of this paper is organized as follows: Section 2 provides the

necessary biological background and terminology. Section 3 introduces the

problem definition and the genetic algorithm for DNA codeword search. Section 4

gives the detailed information about how to accelerate the GA fitness calculation.

Sections 5 and 6 provide details about the hybrid architecture and some

performance analysis of the design. Performance comparison between the hardware

and the software version of the GA, and early results on locally optimum codes are

also presented in Section 6. Final conclusions are given in Section 7.

2. Background

The DNA molecule is a nucleic acid. It consists of two oligonucleotide sequences.

Each sequence consists of a sugar-phosphate backbone and a set of nucleotides

(also called bases) connecting with the backbone. The oligonucleotide sequence is

oriented. One end of it is denoted as 3’ and the other as 5’.

There are four types of bases: Adenine, Thymine, Cytosine, and Guanine. They

are denoted briefly as A, T, C, and G respectively. Each base can pair up with only

one particular base through hydrogen bonds: A+T, T+A, C+G and G+C.

Sometimes we say that A and T are complementary to each other while C and G are

complementary to each other. A Watson-Crick complement of a DNA sequence is

another DNA sequence which replaces all the A with T or vise versa and replaces

all the T with A or vise versa, and also switches the 5’ and 3’ ends. A DNA

sequence binds most stably with its Watson-Crick complement and the structure

they form is called Watson-Crick (WC) duplex. Figure 1 (a) shows an example of a

WC duplex. We refer to the non-WC duplex as crosshybridized (CH) duplex.

Figure 1 (b) shows an example of a CH duplex. Only WC duplexes are needed

during DNA computing. Therefore, it is important to design the DNA codes such

that a fixed temperature can be found that is well above the melting point of all CH

duplexes and well below the melting point of all WC duplexes that can form from

strands in the code.

Predicting crosshybridization involves many considerations. In this paper, we only

consider the first order effect, and use the maximum number of possible Watson-

Crick pairs between two sequences to represent their bonding strength. Such

approximation is widely adopted by the research works in DNA codeword design

[6][12]. Furthermore, the DNA sequences of length 10 or greater are usually

considered to be flexible [6]. Therefore, the binding strength of two DNA strands is

measured by the length of the longest complementary subsequence (not necessarily

contiguous) of one strand and the reverse of the other. For example, Figure 1 (b)

shows two DNA strands that bind with 5 Watson-Crick pairs. The length of the

longest complementary sequence between two flexible DNA strands, A and B, is

the same as the length of the longest common sequence (LLCS) between A and B

[6], where B is the Watson-Crick complement of B.

.

Figure 1 Binding between DNA strands.

3. Problem Formulation and Optimization Algorithm

We consider each DNA codeword as a sequence of length n in which each symbol

is an element of an alphabet of 4 elements. The length of the longest common

sequence between DNA strands A and B is denoted as LLCS(A, B). In this work,

we focus on searching for a set of DNA codeword pairs S, where S consists of a set

of DNA strands of length n and their reverse complement strands e.g. {(s1, 1s), (s2,

2s), …}, where (s1, 1s) denotes a strand and its Watson-Crick complement. The

problem can be formulated as the following constrained optimization problem:

 ||max S such that (1)

 SsssLLCS ∈∀≤ 111 ,),(σ , (2)

A A C G − T G

T T − C G A C

5’ 3’

5’3’

A A C G − T G

T T − C G A C

5’ 3’

5’3’

A A C G T G

T T G C A C

5’ 3’

5’3’

A A C G T G

T T G C A C

5’ 3’

5’3’

(a) WC duplex (b) CH duplex

 SssssLLCS ∈∀≤ 2121 , ,),(σ (3)

 SssssLLCS ∈∀≤ 2121 , ,),(σ , (4)

where σ is a predefined threshold. Equation (1) indicates that our objective is to

maximize the size of the DNA codeword library. The first constraint specifies that a

DNA codeword in the library cannot bind with itself. The second and the third

constraints specify that a DNA codeword in the library cannot bind with another

library word or its Watson-Crick complement. Both of these two constraints must

be satisfied because a DNA strand always occurs with its Watson-Crick

complement.

A genetic algorithm (GA) is a stochastic search technique based on the mechanism

of natural selection and recombination. Solutions, which are also called individuals,

are evolved from generation to generation, with selection, mating, and mutation

operators that provide an effective combination of exploration of the global search

space. The Island multi-deme GA is a widely used parallel GA model in which the

population is divided into several sub-populations and distributed on different

processors. Each sub-population evolves independently for a few generations,

before one or more of the best individuals of the sub-populations migrate across

processors. In this work, the single point cross-over mating operator is used.

Each individual in the population is a DNA codeword encoded as a binary string

with length 2n, where n is the length of the codeword in bases. The four bases (A,

T, C, G) are encoded as (00, 01, 11, 10). Each DNA strand of length 16 can be

represented as a 32 bit integer. Given a codeword library S, the fitness of each

individual d reflects how well the corresponding codeword fits into the current

codeword library. Two values define the fitness, reject_num and max_match. The

reject_num is the number of codewords in the library which satisfies the condition

that σ>),(dsLLCS or σ>),(dsLLCS . The max_match can be calculated as

SsdsLLCSdsLLCSddLLCS ∈∀−−−),),(,),(,),(max(σσσ . The codeword with

lower fitness fits better in the library.

From equations (2)-(4) we know that a valid library word must have reject_num

equal to 0. It is observed that adding a codeword with reject_num = 0 and

max_match > 0 into the library will restrict the future growth of the library. Such

codewords bind very weakly with other library words, but they are too far apart in

the search space and interfere with closest packing. To maximize the library size,

we want to select only those codewords that are “just good enough”. To ensure

this, we add another constraint to the optimization problem:

 SssssLLCSssLLCS ∈∀= 212121 , ,)),(),,(max(σ (5)

Therefore, only codewords with reject_num = 0 (which implies max_match = 0)

will be added into the library.

A traditional GA mutation function might randomly pick an individual in the

population, randomly pick a pair of bits in the individual representing one of its 16

bases, and randomly change the base to one of the 3 other bases in the set of 4

possible bases. In the proposed algorithm, however, we randomly select an

individual, but then to exhaustively check all of the 48 possible base changes. This

is an attempt to speed beneficial evolution of the population by minimizing the

overhead that would be associated with randomly picking this individual again and

again in order to test those mutations. We also specify that if none of the 48

mutations were beneficial, one of them is selected at random. This enables the

individual to remain in the population and possibly experience subsequent

(multiple) mutations. Figure 2 gives the pseudo code for the modified mutation

function.

When an individual in the population achieves a fitness of 0, it is added to the set of

good codewords, and the selected individual in the population is replaced by a new

random individual. The GA is allowed to run until one of three termination criteria

is satisfied: the number of codewords in the set is as large as desired; the algorithm

has run for a specified maximum number of generations; or the algorithm has run

for a specified maximum amount of time. We store the codeword values, the

elapsed time at which they are each found in memory during a run, and store that

data to a disk file at the end of a run. We also calculate and store the average time

at which the ith words are found across multiple runs to assess average

performance.

Figure 2 Modified mutation algorithm.

4. Hardware Acceleration of LLCS Calculation

The most time consuming part of the proposed GA algorithm is to calculate the

fitness value for each individual. Performance profiling of our software GA version

showed that >98% of the computing time was spent calculating the LLCS between

strands.

Mutation()

//M is the set of mutated individuals;

//L is the set of library codewords;

Randomly select an individual s from initial population;

M = Φ;

FOR i = 1 TO n

 B = {A, T, C, G} – {s[i]}; //B is the set of three nucleotides that is different from

the ith nucleotide of s

 Generate three mutated individuals {s1, s2, s3} by replacing the ith nucleotide

with one of the elements of B;

 M = M ∪ {s1, s2, s3};

END

Evaluate the fitness for each m ∈ M;

IF (∃m, fitness(m) = 0) THEN L = L ∪ {m};

ELSE //evolve the population by replacing the original individual with a new

individual with better fitness

 Select the individual x which has the lowest (best) fitness and x∈M;

 IF fitness(x) < fitness(s) THEN replace s with x;

 ELSE replace s with a random individual from M;

END

RETURN

The LLCS is calculated using dynamic programming. Figure 3 gives the pseudo

code of the algorithm. The intermediate results are stored in an n×n matrix, where n

is the length of the DNA codeword in bases. The calculation starts at the top left

corner of the matrix and the final result is the value calculated in the cell located at

the bottom right corner. For DNA codewords with length 16, at least 256

operations are needed before we can obtain the final result. Therefore, the

throughput of the software based LLCS calculation is less than 1/n2.

Figure 3 LLCS distance calculation.

Many systolic algorithms for the LCS problem have been proposed [16][16]. The

LLCS calculation is a much simpler problem. In this work, we implemented a 2D

systolic array for the acceleration of LLCS calculation. The systolic array is an n×n

array of identical cells. Figure 4 (a) gives the structure of each cell, including its

input/output and the computation implemented. The computation is performed

every other clock period. The overall architecture of the 2D systolic array as well as

the data dependency and timing information are shown in Figure 4 (b). In order to

prevent ripple through operation, the cells in the even columns and even rows or

odd columns and odd rows are synchronous to each other and perform the

computation in the same clock period. The rest of the cells are also synchronous to

each other but perform the computation in the next clock period. In this way, the

results propagate through the array diagonally. It is easy to see that after a latency

period that is required to fill the pipeline, the throughput of the systolic array is ½,

i.e. 1 output result per 2 clock periods.

LLCS(a, b)

 Initialize llcs[0][i] and llcs[i][0], 0≤i≤n-1

FOR i = 0 TO n-1 BEGIN

 FOR j = 0 TO n-1 BEGIN

 IF (a[i] = b[j]) THEN k = 1 ELSE k = 0;

 llcs[j][i] = max(llcs[j-1][i], llcs[j][i-1], llcs[j-1][i-1]+k);

 END

 END

END

It is interesting to note that as n increases, the hardware resource cost increases, but

the throughput remains the same, as long as the reconfigurable hardware chip has

sufficient resources to implement a full n×n array of cells. A version of this chip for

words of length 32 is feasible. Another detail is that the systolic array must be fed

by an array of registers that delay the entry of the bases on the right of word a and

at the bottom of the word b. In effect, this synchronizes the presentation of those

parts of the operand words with the diagonal waves of intermediate calculations in

the cells that proceed from the upper left corner down and to the right through the

array.

Figure 4 2D systolic array for LLCS calculation.

5. Hybrid Architecture

The proposed hybrid architecture consists of a host CPU, a hardware accelerator

and a software program running on the host CPU. The host CPU and the hardware

accelerator are connected via the system bus. In order to increase the portability of

the design, we divide it into two modules: the bus interface and the hardware

accelerator core. The hardware accelerator will also be called as processing element

(PE) in the rest of the paper. The bus interface module connects to the bus as a

slave. It has a set of command registers and an information exchange memory,

xi-1,j llcsi-1, j

yi,,j-1
llcsi, j-1

llcsi-1, j-1

yi, j llcsi, j

yi, j
llcsi, j

llcsi, j

IF (yi, j-1 = xi-1, j)
THEN k = 1;
ELSE k = 0;

llcsi,j = max(llcsi-1, j,
llcsi,j-1,
llcsi-1, j-1+k);

xi-1,j llcsi-1, j

yi,,j-1
llcsi, j-1

llcsi-1, j-1

yi, j llcsi, j

yi, j
llcsi, j

llcsi, j

IF (yi, j-1 = xi-1, j)
THEN k = 1;
ELSE k = 0;

llcsi,j = max(llcsi-1, j,
llcsi,j-1,
llcsi-1, j-1+k);

(a) Cell architecture

T

2T

3T

4T

16T
17T 18T 19T 32T

a0 a1 a2 a3 a150 0 0 0 0

b0

b1

b2

b3

b15

0

0

0

0

0

T

2T

3T

4T

16T
17T 18T 19T 32T

a0 a1 a2 a3 a150 0 0 0 0

b0

b1

b2

b3

b15

0

0

0

0

0

(b) 2D systolic array

which can be accessed by both CPU and the PE. For different bus architecture, a

new bus interface must be developed.

5.1 Hardware Acceleration for Multi-deme Parallel GA Based

Codeword Search

A two-level method is adopted to control the PE. At the top level, the operations of

the PE are categorized into 9 states: {idle, init, check_pop, mutation, check_mutate,

update_pop, update_lib, sorting, mating}. In the init state, the PE generates a

random initial population, and sets up either an empty initial library, or reads an

initial partial library from a disk file. In the mutate state, the PE produces a

population of 47 mutated individuals based on a chosen individual. The PE

calculates the fitness for all the individuals in the initial population, and in the

mutated population, in the “check_pop” and “check_mutate” states, respectively. In

the “update_lib” state, the PE writes the newly discovered acceptable codewords

into the library. In the “update_pop” state, the PE writes the best (or a randomly

chosen) mutated individual back to the working population. In the “sorting” state,

the PE scans the entire population to pick the best k individuals. Two parents are

randomly picked from these individuals when the PE is in the “mating” state and

single-point cross-over is performed. A control flag is introduced which can be

used to disable the sorting and mating functions in the PE.

Each state corresponds to an operation in the GA algorithm. Figure 5 (a) shows the

control and data flow graph (CDFG) of the algorithm based on this state division.

The “update_lib” and “update_pop” operations are one cycle operations because

they only perform a memory write. All the other operations are multi-cycle

operations, which again can be divided into sub-states. When the top level state

machine enters the state of a multi-cycle operation, the second level state machine

is triggered.

Figure 5 Top level state machine controller.

We call an operation a blocking operation if its successors in the CDFG cannot

start until this operation is done. Similarly, an operation is called non-blocking

operation if its successors can start right after this operation started. The “init” and

“mutation” operations are both non-blocking operations. While the PE is generating

the initial population and the mutated population, it is at the same time checking the

fitness of the generated individual. The “check_pop” and “check_mutate”,

“sorting”, and “mating” operations are blocking operations. Their following

operations cannot start until they have been finished. Figure 5 (b) shows the

scheduling of the operations.

A buffer is needed to pass the results of one operation to its successor. In particular,

a first-in-first-out (FIFO) storage should be used as the output buffer of a non-

blocking operation. However, the implementation of the FIFO is relatively easy in

(b) Scheduling of operations

(a) Control and data flow graph

mating

init
check
pop

update
lib

mutate check
mutate

update
pop

mating_done

done

idle

sorting

update
lib

foundfound generation_
done

!generation_done

matingmating

initinit
check
pop

check
pop

update
lib

update
lib

mutatemutate check
mutate
check
mutate

update
pop

update
pop

mating_done

done

idleidle

sortingsorting

update
lib

update
lib

foundfound generation_
done

!generation_done

mating

sorting

check mutate

init

check pop

mutate

check mutate

update

mutate

update

non-blocking dependency

blocking dependency

mutate

mating

sorting

check mutate

init

check pop

mutate

check mutate

update

mutatemutate

update

non-blocking dependency

blocking dependency

mutatemutate

this design because the non-blocking operations are always faster than their

successors. Therefore, it is not necessary to check the FIFO underflow condition.

The output buffers are implemented using the FPGA built-in block memories. The

block memories are dual port memories which can be read and written

simultaneously. Three memory blocks are used: Initial Population Memory (Mpop),

Mutated Population Memory (Mmutate) and CodeWord Library Memory (Mlib). The

input and output buffers of different operations are given in Table 1.

Table 1. The input/output buffer of operations.

operations Input Output

init - Mpop

check_pop Mpop Mlib

mutate Mpop Mmute

check_mutate Mmute Mlib

update_lib Mpop Mlib

update_pop Mmute Mpop

sorting Mpop Mpop

mating Mpop Mpop

The PE and the host CPU program run asynchronously. Four-way handshaking

protocol is used to synchronize the communication between hardware and software.

5.2 Parallel Multi-deme GA

The PE discussed above uses about 12,263 LUTs (look-up-tables), which is only

about 42% of the programmable resources in a Xilinx Virtex II 3000 FPGA and

about 16% of the programmable resources in a Xilinx XC2VP70 FPGA. Therefore,

we evaluated a further speed-up enhancement that involved implementing multiple

parallel PEs on a single FPGA. The architecture supports the exchange of best

individuals among PEs. Therefore, the overall system performs parallel multi-deme

GA.

The system consists of n PE modules, which are denoted as GA1~GAn, an arbiter

and a bus interface. The value of n is determined by the size of the FPGA. For

example, n is 2 for the Virtex II 3000 FPGA and 5 for the XC2VP70. Each module

implements the above mentioned genetic algorithm to search for the DNA

codeword. They are independent to each other. The populations in different GA

modules are initialized using different random seeds.

Communication and synchronization are two challenges that need to be addressed

when designing a system that performs parallel GA. All the GA modules share the

same bus interface. Codewords found by any one GA module must be harvested

and passed to the other GA modules. In this design, all the GA modules are

connected to an arbiter. When a GA module finds a new codeword, it raises the

“PE_got_new_word” flag and requests to be connected to the bus interface to

communicate with the host. The arbiter broadcasts the new codeword to all other

GA modules and raises the “update_library” flag. The GA module that receives the

“update_library” request must terminate its current operation and go to

“update_lib” state. If multiple GA modules raise the “PE_got_new_word” flag

simultaneously, the arbiter must select one of them and invalidate the others. The

decision is based on a fixed priority. The arbiter also connects the selected GA

module that has found a new codeword with the bus interface to communicate with

the host. If another GA module finds a new word, it must wait till the end of the

current host-PE communication procedure to be connected to the bus interface.

Figure 6 (a) shows the state machine controller of the arbiter for library update.

Figure 6 State machine controller of the arbitrator.

In the multi-deme island GA, the best few individuals of each sub-population

migrate periodically according to an interconnect configuration, e.g. around a ring

in one direction. This procedure is also controlled by the arbiter. A separate state

machine controller in the arbiter is developed for the migration procedure. Figure 6

(b) shows the state diagram of the migration controller. Periodically, the PE sends a

migration request to the arbiter. The arbiter will acknowledge this request if its

migration controller is in the idle state. After receiving the acknowledgement from

the arbiter, the PE sends its best few individuals and their fitness values to the

arbiter. These data are placed in a memory together with similar data received from

other PEs. The arbiter sorts and picks the best m individuals, where m is the number

of individuals to be migrated, and sends them back to the PE which started the

request for migration. For the case of 2 PEs on a chip served by one arbiter, this is

equivalent to a directed ring configuration. However, for the case of more than 2

PEs on a chip, this approach implements a local pooling, or all-to-all configuration.

Above the chip level, the host is still free to implement any communication

configuration among host nodes in a cluster with standard MPI.

5.3 Hardware Acceleration for Exhaustive Search

The effectiveness of the stochastic search decreases when the size of the search

space increases, or when the solution space decreases due to additional constraints.

PE_Commun
icating

Idle

Update_all
_libraries

Wait

PE_got_new_word

PE_got_new_word

Communication
done

Communication
done

PE_Commun
icating

Idle

Update_all
_libraries

Wait

PE_got_new_word

PE_got_new_word

Communication
done

Communication
done

(a) Controller for library update (b) Controller for individual Migration

idle

Acknowledge and
receive the data

Send the best
migrated individuals

Merge and sort the
migrated individuals

PE request to migrate

idle

Acknowledge and
receive the data

Send the best
migrated individuals

Merge and sort the
migrated individuals

PE request to migrate

idle

Acknowledge and
receive the data

Acknowledge and
receive the data

Send the best
migrated individuals

Merge and sort the
migrated individuals

PE request to migrate

As codewords are added to the library, more library words must be checked against

candidates, and the new words act as new constraints. As a result, the time required

for the GA to find a new codeword increases exponentially. Furthermore, using

stochastic search, we will never know whether still another new codeword can be

added to the library. The only way to answer this question is by using exhaustive

search, i.e. checking every possible codeword in the universe of all possible

codewords. The complexity of exhaustive search increases linearly with the number

of codewords already in the library. However, the complexity of exhaustive search

also increases exponentially with the length of the codewords. As the name

suggests, for a given initial library, the exhaustive search portion of the hybrid

algorithm must scan the entire codeword space and find all remaining additional

valid codewords that satisfy constraint equations (2)-(4). For DNA codewords of

length 16, and for an initial library with 100 codewords, exhaustive search in

software would take 52 days on a 2.0GHz Intel Xeon processor if checking a pair

takes 10 microseconds.

With small modification, we can implement the exhaustive DNA codeword search

using hardware. The hardware accelerator for exhaustive codeword search consists

of only one memory, which is used to store the codeword library, a 32 bit counter

cycled from 0 to its maximum value to represent the potential new word, and two

systolic array fitness checkers. For each codeword x, the calculation of

),(sxLLCS and),(sxLLCS , where Ss∈ , are performed simultaneously by the two

fitness checkers.

The hardware accelerator for exhaustive search of DNA codewords of length 16

uses 21,733 LUTs, which is about 75% of Virtex II 3000 FPGA. At 100Mhz clock

frequency, the hardware accelerator takes about 1.5 hours to scan the entire ~4.3

billion codeword space for codewords of length 16, which is over 800 times faster

than the workstation PC software only case. At the completion of exhaustive search

we can say that a codeword set is locally optimum, in the sense that given the series

of random numbers used to drive the stochastic GA in the early phase of building,

no additional codewords can be added to increase the size of the library. To date,

little data has been published in the literature on locally optimum edit distance

codes of lengths greater than about 12 bases, and this hardware accelerator enables

us to efficiently explore this aspect of the problem domain for the first time.

6. Experimental Results

A hardware accelerator that uses a stochastic GA to build DNA codeword libraries

of codeword length 16 has been designed, implemented, and tested. The first

version uses one fitness evaluator and is implemented on a single FPGA chip.

Table 2 Comparison of different platforms

The design has actually been ported onto three different reconfigurable computing

platforms, including a Xilinx XUP Virtex-II Pro evaluation board [13], a laptop

computer with the Annapolis Wildcard FPGA board [14], and a desktop computer

with the Annapolis Wildstar–II FPGA board. Different bus architectures are used

to connect the hardware accelerator to the host CPU in each of the different

platforms. The PLB bus is used in the Xilinx Virtex-II Pro evaluation board, while

the PCMCIA card bus and PCI-X bus are used in the system with WildStar and

WildCard, respectively. The other difference among these platforms is the amount

of resources available on the FPGA chips resident on the boards. Table 2 shows the

size of the reconfigurable logic and the on-chip memory for the different computing

platforms.

The first set of experiments evaluates the performance impact of various parameters

of the hardware multi-deme GA, including the size of the sub-population, the

percentage of mutation during each generation, the length of epoch between

Computing platform FPGA Logic Cells BRAMs (kb)

XUP eval. board XC2VP30 30,816 2,448

WildCard-II Xilinx Virtex II 3000 28,672 1,728

WildStar Pro XC2VP70 74,448 5,904

migrations and the number of best individuals that migrate. For this first set of

experiments, the hardware implementations consisted of 2 parallel PEs that perform

GA based codeword searching, each with one LLCS checker, and without

exhaustive search.

We first ran the DNA codeword searching varying sub-population from 16 to 256.

The number of keepers, the length of the epoch, number of migrated individuals,

and the percentage mutation were fixed to be 8, 5, 7 and 10. Figure 7 shows a

comparison of the average performance of those runs, in terms of the time it takes

to build a large library. Less time is better, so the lower curve is better than the

upper curve. In all the plots given by Figure 7-13, the x axis is the number of

codewords found, where each codeword is either a strand or its reverse complement

(a pair counts for 2). The GA is a stochastic algorithm, so each point in the curves

is the average over 10 runs of the times taken to find the # of codewords on the x

axis. For these experiments we set the length of the codewords n to be 16, and the

permissible match (n- edit distance) σ to be 10. The experimental results show that

with mating and migration enabled, a small population is superior to a large

population in terms of search speed. This is because the most time consuming

operation in mating and migration is pick up the best k individuals, which we call

the number keepers. This does not require a full sort of the population, but even so,

it is a sequential procedure that cannot be accelerated by a parallel architecture for

typical population sizes. It takes more time to index through a larger population

multiple times to find its best k individuals.

Figure 7 Effect of size of sub-population

#keepers=8, epcoh=5, #migration=7, %mutation=10

1.0E-3
1.0E-2
1.0E-1
1.0E+0
1. 0E+1
1. 0E+2
1.0E+3

92 10
4

11
6

12
8

14
0

15
2

16
4

17
6

18
8

20
0

21
2

22
4

23
6

24
8

Code Word Found

Ti
m

e
(s

ec
)

pop=16 pop=64

pop=256

pop=32 pop=128

#keepers=8, epcoh=5, #migration=7, %mutation=10

1.0E-3
1.0E-2
1.0E-1
1.0E+0
1. 0E+1
1. 0E+2
1.0E+3

92 10
4

11
6

12
8

14
0

15
2

16
4

17
6

18
8

20
0

21
2

22
4

23
6

24
8

Code Word Found

Ti
m

e
(s

ec
)

pop=16 pop=64

pop=256

pop=32 pop=128

pop=16 pop=64

pop=256

pop=32 pop=128

In the second experiment, we vary the percentage mutation from 1 to 25 to evaluate

its impact on performance. The size of sub-population, the number of migrated

individuals, the length of epoch and the number of keepers were fixed to be 64, 7, 5

and 8. Figure 8 shows a comparison of the average performance of different

configurations. As we can see, the percentage mutation has a significant impact on

the system performance.

Figure 8 Effect of mutation

Higher percentage mutation leads to better performance. For example, to find 206

codewords, the hardware GA configured with 25% mutation is about 400X faster

than the hardware GA configured with 1% mutation. This can partly be explained

by the overhead of mating. When the size of population is fixed, the value of

percentage mutation determines how many mutation operations will be performed

between two mating operations. Because each mutation operation takes fixed

amount of time, it also determines the frequency of mating operations. A higher

percentage mutation implies less frequent mating, and thus, lower overhead from

the sorting operation.

In the third and the fourth experiments, we vary the number of migrated individuals

and the number of generations in the epoch between migrations, respectively, to

evaluate the performance impact of these two parameters. However, the results

show that there is little performance impact from the number of migrated

individuals and the epoch length. Due to the space limit, we do not report this data

in the paper.

pop=64, #mig=7, epoch=5, #keepers=8

0.0E+0
5.0E+1
1.0E+2
1.5E+2
2.0E+2
2.5E+2
3.0E+2

13
2

14
0

14
8

15
6

16
4

17
2

18
0

18
8

19
6

20
4

21
2

22
0

22
8

1% mutation
5% mutation
10% mutation
25% mutation

Code Word Found

Ti
m

e
(s

ec
)

pop=64, #mig=7, epoch=5, #keepers=8

0.0E+0
5.0E+1
1.0E+2
1.5E+2
2.0E+2
2.5E+2
3.0E+2

13
2

14
0

14
8

15
6

16
4

17
2

18
0

18
8

19
6

20
4

21
2

22
0

22
8

1% mutation
5% mutation
10% mutation
25% mutation

1% mutation
5% mutation
10% mutation
25% mutation

Code Word Found

Ti
m

e
(s

ec
)

Figure 9 Effect of mating and migration.

The second set of experiments compares the performance of multi-deme hardware

GA with and without mating and migration. Figure 9 shows a comparison of the

average performance of GA with mating and migration versus GA without mating

and migration when the size of sub-population varies from 16 to 256. The number

of keepers, the length of the epoch, the size of migrated individuals and the

percentage mutation are fixed to be 8, 5, 7 and 10. As we can see, overall, the

parallel GA without mating and migration is more efficient than the parallel GA

Code Word Found
Ti

m
e

(s
ec

)

(a) Population = 16

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

2PE
2PE_MATING_MIGR

Code Word Found
Ti

m
e

(s
ec

)

(a) Population = 16

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

2PE
2PE_MATING_MIGR

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

2PE
2PE_MATING_MIGR
2PE
2PE_MATING_MIGR

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

2PE

2PE_MATING_MIGR

Code Word Found

Ti
m

e
(s

ec
)

(b) Population = 64

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

2PE

2PE_MATING_MIGR

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

2PE

2PE_MATING_MIGR

2PE

2PE_MATING_MIGR

Code Word Found

Ti
m

e
(s

ec
)

(b) Population = 64

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

24
6

2PE

2PE_MATING_MIGR

Code Word Found

Ti
m

e
(s

ec
)

(c) Population = 128

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

24
6

2PE

2PE_MATING_MIGR

2PE

2PE_MATING_MIGR

Code Word Found

Ti
m

e
(s

ec
)

(c) Population = 128

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

2PE
2PE_MATING_MIGR

Code Word Found

Ti
m

e
(s

ec
)

(a) Population = 16

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

2PE
2PE_MATING_MIGR
2PE
2PE_MATING_MIGR

Code Word Found

Ti
m

e
(s

ec
)

(a) Population = 16

with mating and migration. The difference becomes more significant as the size of

population increases. Again, this shows that the overhead of mating increases as the

population size increases.

Figure 10 analyzes the data from this experiment in terms of the speed

improvement of parallel GA without mating and migration, for different population

sizes, normalized to the performance with population size 16. As we can see, at the

beginning of the search, smaller populations find words faster, but as the number of

codewords increases, the larger populations find word slightly faster. This effect

may be due to the beneficial effect of processing more mutations in between pick-

up operations at the end of generations (doing wider search) outweighs the negative

effect of the overhead of the pickup operation that also increases with population

size.

Figure 10 Effect of size of population in GA w.o. mating and migration.Figure 11

shows the performance comparison between a single PE system and a 2 PE system.

Both systems are configured with population size equal to 16 and both are running

without mating and migration. As expected, the 2-PE system is about twice as fast

as the one PE system

The next set of experiments compares the hardware GA with a software version of

the GA, again without mating and migration, and with one PE is instantiated in the

hardware.

of codewords

sp
ee

d
im

pr
ov

em
en

t

-0.8
-0.4

0

0.4
0.8
1.2

14
8

15
6

16
4

17
2

18
0

18
8

19
6

20
4

21
2

22
0

22
8

23
6

population = 64
population=128
population=256

of codewords

sp
ee

d
im

pr
ov

em
en

t

-0.8
-0.4

0

0.4
0.8
1.2

14
8

15
6

16
4

17
2

18
0

18
8

19
6

20
4

21
2

22
0

22
8

23
6

-0.8
-0.4

0

0.4
0.8
1.2

14
8

15
6

16
4

17
2

18
0

18
8

19
6

20
4

21
2

22
0

22
8

23
6

population = 64
population=128
population=256

population = 64
population=128
population=256

Figure 11 Performance comparison of single PE vs. 2-PE

Figure 12 shows a comparison of the average performance of the GA based

codeword search algorithm running in software on a single workstation processor

(upper curve) and the hardware accelerated hybrid architecture (lower line). The

upper curve for the software version was run on one workstation with 1 P4

processor. The lower curve for the hardware GA was run with a 100MHz FPGA

clock frequency.

Figure 12 Comparison of average performance.

Compared to the software only implementation, the hardware accelerator running at

100MHz provides approximately a 1000X speed-up. The speed-up of the hardware

versions is due to the parallel and pipelined architecture of the hardware. Based on

previous work [15] we would expect almost linear speed-up (a/0.98) vs. the number

of fitness calculators, and linear speed-up as the number of distributed GA

populations p is increased.

Ti
m

e
(s

ec
) Time vs # Words Found

1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Code Words found

Software GA
Hardware GA

Ti
m

e
(s

ec
) Time vs # Words Found

1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Code Words found

Software GA
Hardware GA
Software GA
Hardware GA

0.00E+00

4.00E+01

8.00E+01

1.20E+02

1.60E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

1PE

2PE w.o. Mating & MGR

Code Word Found

Ti
m

e
(s

ec
)

0.00E+00

4.00E+01

8.00E+01

1.20E+02

1.60E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

1PE

2PE w.o. Mating & MGR

0.00E+00

4.00E+01

8.00E+01

1.20E+02

1.60E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

0.00E+00

4.00E+01

8.00E+01

1.20E+02

1.60E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

1PE

2PE w.o. Mating & MGR

1PE

2PE w.o. Mating & MGR

Code Word Found

Ti
m

e
(s

ec
)

Figure 13 Comparison of best performance.

Figure 13 shows a comparison of the best performance to date of the software GA

and the hardware GA. In this case, the top red curve for the distributed software

multi-deme GA was run on a cluster using 10 P4 processors without mating, but

with migration. The inter-processor communication is implemented using MPI

(message passing interface). The middle blue curve for the hardware GA was run

on the Annapolis Wildcard-II in a notebook PC with a 30MHz FPGA clock

frequency, without mating and migration. The lower magenta curve for the

hardware GA with exhaustive search was run on a Wildcard board in a P4

workstation with a 100MHz FPGA clock frequency, also without mating and

migration (exhaustive search found 8 more words).

Figure 14 Size of local optimal DNA codeword libraries built with 300sec. GA

plus exhaustive search.

In a final set of experiments, we used the exhaustive search version of the hardware

accelerator to determine the average size of locally optimum codeword libraries

that can be built, and the efficacy of the GA for building them. Figure 14 shows a

histogram of the sizes of libraries generated by running hardware GA (without

Measured Performance Building 16/10 Codes

1.0E-04

1.0E-02

1.0E+00

1.0E+02

1.0E+04

1.0E+06

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Code Words Found

Ti
m

e
(s

ec
)

Software GA(10 P4 cluster)
Hardware GA, 30MHz
HW GA + ES, 100MHz

Measured Performance Building 16/10 Codes

1.0E-04

1.0E-02

1.0E+00

1.0E+02

1.0E+04

1.0E+06

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Code Words Found

Ti
m

e
(s

ec
)

Software GA(10 P4 cluster)
Hardware GA, 30MHz
HW GA + ES, 100MHz

Software GA(10 P4 cluster)
Hardware GA, 30MHz
HW GA + ES, 100MHz

Histogram of Library Lengths Found
HW GA 5 min. + ES 1 hr

0

4

8

12

16

116 121 126
Library Length

fr
eq

ue
nc

y GA + ES, pre-seeded

Histogram of Library Lengths Found
HW GA 5 min. + ES 1 hr

0

4

8

12

16

116 121 126
Library Length

fr
eq

ue
nc

y GA + ES, pre-seededGA + ES, pre-seeded

mating and migration) for 300 seconds followed by hardware exhaustive search.

The results show that the size of the local optimal DNA codeword library follows

approximately a normal distribution with mean of about 122 codewords

(word/word’ pairs). The experiment consists of 60 tests, which took about 90 hours.

The equivalent test on a 30 workstation cluster would have taken about 3000 hours

(4 months).

Figure 15 shows data from a second experiment involving 32 runs of the same

hardware GA for 600 sec. followed by exhaustive search. The number of words

found during the GA phase (red) and the exhaustive search phase (green) is

highlighted.

Locally optimum library lengths for 32 runs of
GA for 600 sec. followed by Exhaustive Search (ES)

0

20

40

60

80

100

120

140

1 6 11 16 21 26 31
run #

w

or
ds

 in
 fi

na
l l

ib
ra

ry

added by ES

Before_ES

Figure 15 Sizes of Libraries built with 600 sec. GA followed by exhaustive

search.

The GA phase alone finds an average of 120.4 words, and exhaustive search raises

the number found to vs. 121.7. So, GA alone found about 98.9% of the words that

can be found.

7. Conclusions and Future Work

In this work, we propose a novel architecture for accelerating a multi-deme parallel

GA based DNA codeword searching algorithm. Our preliminary research results

show that, using a new hardware and software hybrid implementation, we can

speedup the DNA codeword search procedure by more than 1000X. We have also

described a hardware exhaustive search extension that can produce known locally

optimum codes. In the future, we plan to extend the current architecture to

incorporate thermodynamics based metrics for estimating the binding strength of

DNA pairs, and a checker for codes word of at least length 32.

References

[1] L. M. Adleman, “Molecular Computation of Solutions to Combinatorial

Problems,” Science, vol. 266, pp. 1021-1024, November 1994.

[2] A. Brenneman and A. Condon, “Strand Design for Biomolecular

Computation”, Theoretical Computer Science, vol. 287, pp.39-58, 2002.

[3] S.-Y. Shin, I.-H. Lee, D. Kim, and B.-T. Zhang, Multiobjective Evolutionary

Optimization of DNA Sequences for Reliable DNA Computing”, IEEE

Transactions on Evolutionary Computation, vol. 9(20), pp.143-158, 2005.

[4] F. Tanaka, A. Kameda, M. Yamamoto, and A. Ohuchi, Design of Nucleic Acid

Sequences for DNA Computing based on a Thermodynamic Approach,

Nucleic Acids Research, 33(3), pp.903-911, 2005.

[5] J. Santalucia, “ A Unified View of polymer, dumbbell, and oligonucleotide

DNA nearest neighbor thermodynamics”, Proc. Natl. Acad. Sci., Biochemistry,

pp. 1460-1465, February 1998.

[6] A. D’yachkov, P.L. Erdös, A. Macula, V. Rykov, D. Torney, C-S. Tung, P.

Vilenkin and S. White, “Exordium for DNA Codes,” Journal of Combinatorial

Optimization, vol. 7, no. 4, pp. 369-379, 2003.

[7] R. Deaton, M. Garzon, R.C. Murphy, J.A. Rose, D.R. Franceschetti, and S.E.

Jr. Stevens, "Genetic search of reliable encodings for DNA-based

computation," Proceedings of the First Annual Conference on Genetic

Programming, pp. 9-15, July 1996.

[8] Bishop, M. , Macula, A. , Pogozelski, W. , and Rykov, V. , “DNA Codeword

Library Design”, Proc. Foundations of Nanoscience – Self Assembled

Architectures and Devices, (FNANO), April 2005.

[9] Tulpan, D.C. , Hoos, H. , Condon, A. ,“Stochastic Local Search Algorithms for

DNA Word Design”, Eighth International Meeting on DNA Based

Computers(DNA8), June 2002.

[10] S. Houghten, D. Ashlock and J. Lennarz, “Bounds on Optimal Edit Metric

Codes”, Brock University Tech. Rer.t # CS-05-07, July 2005.

[11] O. Milenkovic and N. Kashyap, “On the Design of Codes for DNA

Computing,” Lecture Notes in Computer Science, pp. 100-119, Springer

Verlag, Berlin-Heidelberg, 2006.

[12] R. Brualdi, and V. Pless, “Greedy Codes,” Journal of Combinatorial Theory

Series A, vol. 64, pp. 10-30, 1993.

[13] http://www.xilinx.com/

[14] http://www.annapmicro.com/

[15] D. Burns, K. May, T. Renz, and V. Ross, “Spiraling in on Speed-Ups of

Genetic Algorithm Solvers for Coupled Non-Linear ODE System

Parameterization and DNA Code Word Library Synthesis,” MAPLD

International Conference, 2005.

[16] P.D. Michailidis and K.G. Margaritis, “New Processor Array Architectures for

the Longest Common Subsequence Problem,” The Journal of Supercomputing,

vol. 32, pp. 51-69, 2005.

[17] Y.C. Lin and J.W. Yeh, “A Scalabl and Efficient Systolic Algorithm for the

Longest Common subsequence Problem,” Journal of Information Science and

Engineering, vol. 18, pp. 519-532, 2002.

